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Abstract

Q2 evolution equations are important not only for describing hadron reactions in accelerator experiments but also

for investigating ultrahigh-energy cosmic rays. The standard ones are called DGLAP evolution equations, which are

integrodifferential equations. There are methods for solving the Q2 evolution equations for parton-distribution and

fragmentation functions. Because the equations cannot be solved analytically, various methods have been developed

for the numerical solution. We compare brute-force, Laguerre-polynomial, and Mellin-transformation methods partic-

ularly by focusing on the numerical accuracy and computational efficiency. An efficient solution could be used, for

example, in the studies of a top-down scenario for the ultrahigh-energy cosmic rays.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

High-energy hadron reactions are described in terms of parton-distribution functions (PDFs) and frag-

mentation functions (FFs). There are parametrizations for the PDFs [1] and FFs [2]. Using these functions,

cross-sections of high-energy hadron reactions are evaluated. Precise calculations of these cross-sections are

important for finding any new physics beyond the current theoretical framework.

The PDFs depend on two kinematical variables x and Q2. They are defined by Q2 = �q2 and x = Q2/
(2p Æ q) in lepton scattering with the momentum transfer q and the hadron momentum p. The FFs depend

on Q2 and another variable x ¼ 2Eh=
ffiffi
s

p
, where Eh is the hadron energy and

ffiffi
s

p
is the center-of-mass energy.

Their Q2 dependence is called scaling violation, which is calculated by the DGLAP (Dokshitzer–Gribov–

Lipatov–Altarelli–Parisi) evolution equations [3] in the perturbative QCD region.
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The Q2 evolution equations are frequently used in describing high-energy hadron reactions. Because the

PDFs and FFs vary significantly in the current accelerator-reaction range, Q2 = 1 to 105 GeV2, the Q2

dependence should be calculated accurately. Furthermore, it is known that high-energy cosmic rays have

energies much more than the TeV scale. Analytical forms of current PDFs and FFs are supplied typically

in the GeV region, so that they have to be evolved to the scale which could be more than TeV in order to
use them for investigating the cosmic rays [4,5].

A useful evolution code was developed in [4] for the cosmic ray studies. The Laguerre-polynomial method

was used for solving the evolution equations. Splitting functions, PDFs, and FFs are expanded in terms of

the Laguerre polynomials, and then the evolution is described by a simple summation of their expansion

coefficients. In fact, the method is very efficient for solving the equations in comparison, for example, with

a direct integration method [6,7]. However, because the Laguerre polynomials Ln(�lnx) go to infinity in the

limit x ! 0, it could have an accuracy problem in the small x region where high-energy reactions are sen-

sitive. In this paper, we discuss evolution results by the Laguerre method [4,8] in comparison with the ones
by other solution methods, ‘‘brute-force’’ [6] and Mellin-transformation [9] methods. In particular, evolu-

tion accuracy and computation time are compared. It is the purpose of this paper to clarify the advantages

and disadvantages of these numerical solution methods for a better description of high-energy hadron reac-

tions including the high-energy cosmic rays. In particular, the FF evolution could be used for studying a

top-down scenario in order to determine the origin of ultrahigh-energy cosmic rays, namely from a decay

of a superheavy particle [5].

This paper consists of the following. The DGLAP evolution equations are introduced in Section 2 and

numerical solution methods are explained in Section 3. Evolution results and their comparisons are dis-
cussed in Section 4. The results are summarized in Section 5.

2. Q2 evolution equations

From the cross-section measurements of high-energy lepton–hadron, hadron–hadron, and lepton–anni-

hilation reactions, the PDFs and FFs are extracted. The PDFs and FFs are expressed in terms of the two

kinematical variables x and Q2. A PDF or a FF is expressed f(x,Q2) in the following. We investigate the
standard Q2 evolution equations, which are called the DGLAP evolution equations [3]. The flavor nonsin-

glet equation is written as
o

o lnQ2
fNSðx;Q2Þ ¼ asðQ2Þ

2p

Z 1

x

dy
y
PNSðx=yÞfNSðy;Q2Þ; ð1Þ
where fNS(x,Q
2) is a nonsinglet (NS) function, PNS(x) is a nonsinglet splitting function, and as(Q

2) is the

running coupling constant. The splitting functions for parton distributions and fragmentation functions

are identical in the leading order (LO) of as; however, they differ if higher order corrections are included

[10]. In order to make the evolution equation slightly simpler, the variable t is used instead of Q2:
t � � 2

b0

ln
asðQ2Þ
asðQ2

0Þ

" #
; ð2Þ
where the running coupling constant in the leading order (LO) is given by as(Q
2) = 4p/[b0ln(Q

2/K2)] with the

QCD scale parameter K. The constant b0 is expressed as b0 = 11CG/3 � 4TRNf/3 with CG = Nc and TR =

1/2. Here, Nc is the number of color (Nc = 3) and Nf is the number of flavor. The Q2
0 in Eq. (2) indicates

the initial Q2, where the evolved function is provided. Using this variable t in Eq. (1), we obtain
o

ot
fNSðx; tÞ ¼

Z 1

x

dy
y
PNSðx=yÞfNSðy; tÞ; ð3Þ
for the nonsinglet evolution.
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In the flavor singlet case, the evolution is described by two coupled integrodifferential equations:
o

ot
fðx; tÞ ¼

Z 1

x

dy
y
Pðx=yÞfðy; tÞ; ð4Þ
where the matrices f and P are defined by
fðx; tÞ ¼
fsðx; tÞ
fgðx; tÞ

� �
; PðxÞ ¼

PqqðxÞ 2N fP ijðxÞ
P jiðxÞ PggðxÞ

� �
: ð5Þ
The indices i and j indicate ij = qg for the PDFs and ij = gq for the FFs. The functions Pqq, Pqg, Pgq, and Pgg

are splitting functions. The function Pij determines the probability of the splitting process that a parton j

with the momentum fraction y splits into a parton i with the momentum fraction x and another parton and

the j-parton momentum is reduced by the fraction z. In the LO, the splitting functions are expressed as
PqqðxÞ ¼ PNSðxÞ ¼ CF

1þ x2

ð1� xÞþ
þ 3

2
dð1� xÞ

� �
;

PqgðxÞ ¼ TR x2 þ ð1� xÞ2
h i

;

PgqðxÞ ¼ CF

1þ ð1� xÞ2

x
;

PggðxÞ ¼ 2CG

x
ð1� xÞþ

þ 1� x
x

þ xð1� xÞ þ 11

12
� 1

3

N fTR

CG

� �
dð1� xÞ

� �
;

ð6Þ
where CF is given by CF ¼ ðN 2
c � 1Þ=ð2N cÞ and 1/(1 � x)+ is defined by

R 1

0
dxgðxÞ=ð1� xÞþ ¼R 1

0
dx ½gðxÞ � gð1Þ�=ð1� xÞ with an arbitrary function g(x).

We need to solve the nonsinglet and singlet evolution equations in Eqs. (3) and (4). These are not simple

integrodifferential equations, so that an efficient numerical method should be investigated. In the next sec-

tion, three popular numerical methods are explained.
3. Numerical methods for solving Q2 evolution equations

There are various ways for solving the DGLAP equations. In this section, we explain three popular

methods, brute-force, Laguerre-polynomial, and Mellin-transformation methods. In the following subsec-

tions, only the nonsinglet evolution is explained because the singlet evolution can be solved in the same

way.
3.1. Brute-force method

The simplest way is possibly to use the brute-force method [6,7]. It may seem to be too simple, but it is

especially suitable for solving more complicated equations with higher-twist terms [11]. These equations

could not be easily handled by the orthogonal-polynomial methods such as the Laguerre-polynomial

one in Section 3.2 and by the Mellin-transformation method in Section 3.3. Furthermore, a computer code

is so simple that the possibility of a program mistake is small, which means the code could be used for

checking other numerical methods. These are the reasons why it was investigated in [7].

In the brute-force method, the two variables t and x are divided into small steps, and then the
differentiation and integration are defined by
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of ðx; tÞ
ot

) f ðxi; tjþ1Þ � f ðxi; tjÞ
Dtj

;

Z
dxf ðx; tÞ )

XNx

k¼1

Dxkf ðxk; tjÞ; ð7Þ
where Dtj and Dxk are the steps at the positions j and k, and they are given by Dtj = tj + 1 � tj and

Dxk = xk � xk�1. The numbers of t and x steps are denoted Nt and Nx, respectively. Applying these equa-

tions to Eq. (3), we write the nonsinglet evolution from tj to tj + 1 as
qNSðxi; tjþ1Þ ¼ qNSðxi; tjÞ þ Dtj
XNx

k¼i

Dxk
xk

P qqðxi=xkÞqNSðxk; tjÞ: ð8Þ
If the distribution qNS is supplied at t1 = 0, the next one qNS(x, t2) can be calculated by the above equation.

Repeating this step Nt � 1 times, we obtain the final distribution at tNt
. However, it is obvious that the step

numbers Nt and Nx should be large enough to obtain an accurate evolution result.
3.2. Laguerre polynomial method

The evolution equations could be solved by expanding the distribution and splitting functions in terms of
orthogonal polynomials. A popular method of this type is to use the Laguerre polynomials [4,8]. They are

defined in the region from 0 to 1, so that the variable x should be transformed to x 0 by the relation

x 0 = �lnx.

The nonsinglet evolution is discussed in the following. The evolution function ENS(x, t), which describes

the distribution evolution from t = 0 to t, is defined by
fNSðx; tÞ ¼
Z 1

x

dy
y
ENSðx=y; tÞfNSðy; t ¼ 0Þ: ð9Þ
Then, it satisfies
o

ot
ENSðx; tÞ ¼

Z 1

x

dy
y
PNSðx=yÞENSðy; tÞ: ð10Þ
Because this is the same integrodifferential equation as the original DGLAP equation, one may wonder why

such a function should be introduced. There is an advantage that the evolution function should be the delta

function at t = 0: ENS(x, t = 0) = d(1 � x) because of its definition in Eq. (9). It makes the following analysis

simpler. The functions are expanded in terms of the polynomials: PNSðe�x0 Þ ¼
P

nP
n
NSLnðx0Þ and

ENSðe�x0 ; tÞ ¼
P

nE
n
NSðtÞLnðx0Þ, where Pn

NS and En
NSðtÞ are the expansion coefficients. The coefficient Fn for

a function F(x) is given by F n ¼
R 1

0
dxLnðx0ÞF ðxÞ, and it could be calculated analytically for a simple func-

tion. If the two functions on the RHS of Eq. (10) are expanded, it becomes an integration of two Laguerre

polynomials. Using the formula
R x0

0
dy0 Lnðx0 � y 0ÞLmðy 0Þ ¼ Lnþmðx0Þ � Lnþmþ1ðx0Þ for this integration, we

obtain
d

dt
En
NSðtÞ ¼

Xn

m¼0

Pn�m
NS � Pn�m�1

NS

� �
EmðtÞ: ð11Þ
Because the evolution function is a delta function at t = 0, all the expansion coefficients are one. Therefore,

this equation is easily solved to give a summation form:
Em
NSðtÞ ¼ eP

0
NS

t
Xm
k¼0

tk

k!
Bk
m; Bkþ1

m ¼
Xm�1

i¼k

ðPm�i
NS � Pm�i�1

NS ÞBk
i : ð12Þ
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This recursion relation is calculated with the relations B0
i ¼ 1; B1

i ¼
Pi

j¼1ðP
j
NS � P j�1

NS Þ and Bk
0 ¼

Bk
1 ¼ � � � ¼ Bk

k�1 ¼ 0. After all, the evolution is calculated by the simple summation:
fNSðx; tÞ ¼
XNLag

n¼0

Xn

m¼0

½En�mðtÞ � En�m�1ðtÞ�Lnð� ln xÞf m
NSðt ¼ 0Þ: ð13Þ
In this way, the integrodifferential equation becomes a simple summation of Laguerre-expansion coeffi-

cients, so that this method is considered to be a very efficient numerical method for the solution.
3.3. Mellin-transformation method

The Mellin-transformation method is one of the popular evolution methods [9]. It is used because the

Mellin transformation of the RHS of Eq. (3) becomes a simple multiplication of two moments, namely

the moments of the splitting function and the distribution function. The moments of the splitting functions

(anomalous dimensions) are well known and a simple functional form is usually assumed for the distribu-

tion at certain small Q2 so as to calculate its moments easily. Then, it is straightforward to obtain the ana-

lytical solution in the moment space. Furthermore, the computation time is fairly short. These are the

reasons why this method has been used as a popular method. For example, it is used for the v2 analysis

of experimental data for obtaining polarized PDFs [12], whereas the brute-force method is employed in
[13].

The Mellin transformation and inversion are defined by
f̂ ðs; tÞ ¼
Z 1

0

dxxs�1f ðx; tÞ; f ðx; tÞ ¼ 1

2pi

Z cþi1

c�i1
dsx�sf̂ ðs; tÞ: ð14Þ
Here, the upper limit of the x integration is taken one because the distribution f(x) vanishes in the region

x P 1. The Mellin inversion is a complex integral with an arbitrary real constant c, which should be taken
so that the integral

R 1

0
dxf ðxÞxc�1 is absolutely convergent. If this transformation is used, the integrodiffer-

ential equations become very simple. For example, the nonsinglet evolution equation becomes
o

ot
f̂NSðs; tÞ ¼ P̂NSðsÞf̂NSðs; tÞ: ð15Þ
Its solution is simply given by
f̂NSðs; tÞ ¼ eP̂NSðsÞt f̂NSðs; t ¼ 0Þ: ð16Þ
Because the moments P̂NSðsÞ are well-known quantities and the moments of the initial function f̂NSðs; t ¼ 0Þ
could be evaluated, it is straightforward to calculate the evolution in Eq. (16) in the moment space. How-

ever, the numerical integration is needed for the Mellin inversion in Eq. (14) for transforming the moments

into a corresponding x distribution. Practically, the Mellin inversion is calculated along the integration con-
tour in Fig. 1. Changing the complex integration variable s for the real one z by s = c + zei/ in Eq. (14), we

have
fNSðx; tÞ ¼
1

p

Z 1

0

dz Im ei/x�c�zei/ f̂NSðs ¼ cþ zei/; tÞ
h i

: ð17Þ
The constant c and the angle / are shown in Fig. 1. Using the Gauss–Legendre quadrature for this
integration, we obtain the evolved distribution in the x space.
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Fig. 1. Integration contour.
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4. Comparison of evolution results

In comparing evolution results of three methods, we take the evolved distribution of the brute-force (BF)
method with Nt = 200 and Nx = 4000 as a standard for assessing other evolution accuracy. It is shown in [7]

that the evolution accuracy is better than 2% ifNt = 200 andNx = 1000 are taken. This is the reason why it is

taken as the standard. Because the details are discussed in [7] for the evolution accuracy of the BFmethod, we

discuss only the comparisonwith the results of the Laguerre-polynomial andMellin-transformationmethods.

4.1. Parton distribution functions

In order to show the Q2 evolution of the PDFs, we use the MRST02 distributions [14] which are pro-
vided analytically at Q2 = 1 GeV2. The distributions are evolved to Q2 = 100 GeV2 with the MRST02 scale

parameter by three evolution methods. Then, the ratio of the evolved distribution to the one by the brute-

force method with Nt = 200 and Nx = 4000 is shown for finding the numerical accuracy.

First, the evolution results of the nonsinglet distribution x(uv + dv) are shown in Fig. 2 for the Laguerre

method. The number of the Laguerre polynomials NLag is taken as NLag = 5, 10, 20 and 30, and each dis-

tribution ratio x(uv + dv)Laguerre/x (uv + dv)BF(Nt = 200,Nx = 4000) is shown. It is obvious that accurate evolution
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Fig. 2. Evolved nonsinglet distribution ratios x(uv + dv)
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BF are shown for NLag = 5, 10, 20, and 30 in the Laguerre

polynomial method.
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cannot be obtained if the number NLag is small in the small- and large-x regions. In particular, the ratio

shows oscillatory behavior at small x, which results from the functional behavior of the Laguerre polyno-

mials. The Laguerre polynomials Ln(�lnx) are shown as a function of x in Fig. 3. We find that the oscil-

latory functional form at small x gives rise to the oscillatory behavior in Fig. 2. Therefore, one should be

careful in the Laguerre method that a large number of polynomials should be taken to obtain an accurate
evolution at small x. Furthermore, one should be also careful in the very-large-x region.

Next, the evolution results are shown in Fig. 4 for the Mellin-transformation method. The Mellin inver-

sion of Eq. (17) is numerically calculated by the Gauss–Legendre quadrature with the number of points

NGL, which is taken as NGL = 6, 10, 20, and 50 in Fig. 4. The integration contour of Fig. 1 is used with

the constants c = 1.1 and / = 135� as suggested in [9]. In order to use the Gauss–Legendre quadrature,

the upper limit of the integration of Eq. (17) should be assigned. We decided to take zmax = 16.5x + 3.5

so that the integrand is small enough at z = zmax for the x region 10�5 < x < 0.99. If the number NGL is

small, the evolved nonsinglet distribution is not accurate enough in the small and large x regions as shown
in Fig. 4.
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The inaccuracy in the small and large x regions for NGL = 6 and 10 is understood in the following way.

We show the integrand of Eq. (17) in Fig. 5 by taking x = 10�5, 10�3, 10�1, and 0.9. It is clear that the inte-

grand oscillates at small x so that a certain number of Gauss–Legendre points is needed for getting an accu-

rate evolution. On the other hand, the integrand does not decrease rapidly at large z for the large-x case

(x = 0.9), so that large zmax should be taken for the integration. In addition, the positive contribution at
z � 1 and the negative one at z � 2.5 almost cancel each other, which is another source of numerical

inaccuracy.

The evolution results of the singlet distribution are shown in Figs. 6 and 7 for the Laguerre and Mellin

methods, respectively. We notice in Fig. 6 that the accuracy of the singlet evolution is much better than the

nonsinglet one in the Laguerre method. It comes simply from the functional difference between the nonsin-

glet and singlet distributions. The Laguerre method can be used as an accurate evolution method for the

singlet evolution. The singlet evolution accuracy for the Mellin method is similar to its nonsinglet ones.

If the point number NGL is large enough, the evolution becomes accurate.
The gluon evolution results are shown in Figs. 8 and 9 for the Laguerre and Mellin methods. The La-

guerre evolution becomes much more accurate than its singlet-quark evolution; however, the Mellin evo-

lution becomes slightly inaccurate at large x.
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4.2. Fragmentation functions

The fragmentation functions (FFs) are essential for understanding hadron productions in high-energy

reactions. In addition, they are important for describing ultrahigh-energy cosmic rays in the top-down sce-

nario [4,5]. In comparison with the situation of the PDFs, their determination is still premature in the sense
that experimental data are not still enough to determine them accurately. However, there are available e+e�

annihilation data, which could be used for a global analysis of the FFs. The current status of such analyses

is summarized in [2]. We use the KKP parametrization [15] at Q2 = 2 GeV2 as the initial functions, and then

they are evolved to Q2 = 100 GeV2 with the KKP scale parameter for testing three evolution methods.

The brute-force evolution with Nt = 200 and Nx = 4000 is taken as the standard for showing other evo-

lution results as it was done in the previous subsection. In Fig. 10, the Laguerre-method results for the sin-

glet fragmentation function into the proton and antiproton, Dpþ�p
qs

¼
P

iðDpþ�p
qi

þ Dpþ�p
�qi

Þ, are shown. The

Mellin method results are shown in Fig. 11. The small-x region is shown in these figures for comparing
the results with the PDF accuracy in Section 4.1, although it is outside the range of current accelerator

experiments. As it was found in the PDF evolution, the Laguerre method is not excellent in the small-

and large-x regions unless a large number of polynomials is taken. The ratios in Figs. 10 and 11 show a

similar tendency to the ratios of the PDF singlet evolution results in Figs. 6 and 7, respectively.

The gluon FF evolution results are shown in Figs. 12 and 13 for the Laguerre and Mellin methods. The

gluon FF evolution by the Laguerre method is accurate in the most-x region except for the large-x part. The

Mellin method is also accurate except for the large-x region.

We have compared three evolution methods; however, there are other methods [16]. Because the numer-
ical solution of the DGLAP equations is very important for describing high-energy hadron reactions, an

efficient and accurate method should be investigated further.

4.3. Computation time

We show typical computation time for each evolution method. However, we should aware that it de-

pends much on the numbers, Nt and Nx in the brute-force method, NLag in the Laguerre method, and

NGL in the Mellin method. Therefore, we list CPU time for different parameter values for Nt, Nx, NLag

and NGL in Table 1 by running the codes for the nonsinglet PDF. In the singlet evolution, the time becomes

longer but the tendency of three evolution methods is the same. The used machine is DELL-Dimension-
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8800 with a Pentiam-4 2.8G CPU. The operating system is Redhat-Linux 8.0 and the fortran complier is

g77.

Among the three methods, the brute-force method takes the longest time for the computation simply

because the large numbers of steps are taken. Therefore, it typically takes a few seconds for obtaining a

reasonable accuracy for the nonsinglet evolution (Nt = 50 to 200, Nx = 1000).
In the Laguerre method, the evolution is simply given by the summation of the Laguerre coefficients

which are calculated partially with the recursion relation. There is no numerical integration involved in

the evolution calculation, so that this method is by far the fastest among the studied methods. Even if

NLag = 30 is taken, it takes 0.044 s for the nonsinglet evolution. It means that it is one hundred times faster
Table 1

CPU time for calculating PDFs at 500 x-points by running each evolution code for the nonsinglet distribution with the linux-g77

compiler on a Pentium-4 machine with a 2.8G CPU

Method Condition CPU time (s) for PDFs at 500 x-points

Brute-force Nt = 50, Nx = 1000 1.501

Nt = 200, Nx = 1000 5.986

Nt = 200, Nx = 4000 95.634

Laguerre NLag = 5 0.005

NLag = 10 0.011

NLag = 20 0.025

NLag = 30 0.044

Mellin NGL = 6 0.154

NGL = 10 0.244

NGL = 20 0.464

NGL = 50 1.128

Table 2

Summary of advantages and disadvantages of each evolution method

Method Advantage Disadvantage

Brute-force Simple code: The computer code is very

simple. More complicated evolution

equations with higher-twists (e.g., in [11])

could be handled easily. The evolution could

be accurate in the small- and large-x regions

Long computation time: In order to obtain an

accurate evolution, large numbers of steps (Nt

and Nx) are needed. If one uses the code for

many evolution calculations, it takes a

significant amount of time.

Laguerre Very fast: It takes less than a second by an

ordinary desktop computer. As long as one

does not mind the very small- and large-x

regions, it is a good method for repeated

evolution calculations

Accuracy at small and large x: Depending on

the initial functional form, the results do not

converge at small x unless a large number of

polynomials are used. It is also difficult to

obtain accurate evolution at large x

Mellin Fast: By choosing an appropriate zmax and

NGL in each x region, the code becomes much

faster than the brute-force computation. For

repeated evolution calculations with certain

accuracy, this method is appropriate

Accuracy at small and large x: One should be

careful about the choices of zmax and NGL. In

particular, the Mellin inversion should be

carefully done at very large x.
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than the brute-force method. If one is interested in using it for the singlet evolution and if one does not

mind one or two percent error, it is certainly the best method.

In the Mellin method, accurate evolution results are obtained with NGL = 20. The computation time is

significantly shorter and it is several times faster than the brute-force method. This is the reason why this

method is popular among high-energy physics researchers.
5. Summary

We have compared the evolution results of the parton distribution functions and the fragmentation func-

tions by using three evolution methods, brute-force, Laguerre-polynomial, Mellin-transformation methods.

The advantages and disadvantages of each method are summarized in Table 2.
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[5] S. Sarkar, R. Toldrà, Nucl. Phys. B 621 (2002) 495;

For a general introduction, see F.W. Stecker, J. Phys. G 29 (2003) R47.

[6] N. Cabibbo, R. Petronzio, Nucl. Phys. B 137 (1978) 395;

G.P. Ramsey, Ph.D. thesis, Illinois Institute of Technology, 1982.

[7] M. Miyama, S. Kumano, Comput. Phys. Commun. 94 (1996) 185;

M. Hirai, S. Kumano, M. Miyama, Comput. Phys. Commun. 108 (1998) 38;

Comput. Phys. Commun. 111 (1998) 150 See http://hs.phys.sasa-u.ac.jp/program.html.

[8] W. Furmanski, R. Petronzio, Nucl. Phys. B 195 (1982) 237;

G.P. Ramsey, J. Comput. Phys. 60 (1985) 97;
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